Isoproterenol activates extracellular signal-regulated protein kinases in cardiomyocytes through calcineurin.

نویسندگان

  • Y Zou
  • A Yao
  • W Zhu
  • S Kudoh
  • Y Hiroi
  • M Shimoyama
  • H Uozumi
  • O Kohmoto
  • T Takahashi
  • F Shibasaki
  • R Nagai
  • Y Yazaki
  • I Komuro
چکیده

BACKGROUND Extracellular signal-regulated kinases (ERKs) and calcineurin have been reported to play important roles in the development of cardiac hypertrophy. We examined here the relation between calcineurin and ERKs in cardiomyocytes. METHODS AND RESULTS Isoproterenol activated ERKs in cultured cardiomyocytes of neonatal rats, and the activation was abolished by chelation of extracellular Ca(2+) with EGTA, blockade of L-type Ca(2+) channels with nifedipine, or depletion of intracellular Ca(2+) stores with thapsigargin. Isoproterenol-induced activation of ERKs was also significantly suppressed by calcineurin inhibitors in cultured cardiomyocytes as well as in the hearts of mice. Isoproterenol failed to activate ERKs in either the cultured cardiomyocytes or the hearts of mice that overexpress the dominant negative mutant of calcineurin. Isoproterenol elevated intracellular Ca(2+) levels at both systolic and diastolic phases and dose-dependently activated calcineurin. Inhibition of calcineurin also attenuated isoproterenol-stimulated phosphorylation of Src, Shc, and Raf-1 kinase. The immunocytochemistry revealed that calcineurin was localized in the Z band, and isoproterenol induced translocation of calcineurin and ERKs into the nucleus. CONCLUSIONS Calcineurin, which is activated by marked elevation of intracellular Ca(2+) levels by the Ca(2+)-induced Ca(2+) release mechanism, regulates isoproterenol-induced activation of ERKs in cardiomyocytes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoprotrenol activates extracellular signal-regulated protein kinases in cardiomyocytes through calcineurin.

Signal-Regulated Protein Kinases in Cardiomyocytes Through Calcineurin To the Editor: Zou et al1 reported recently that isoproterenol activates extracellular signal-regulated protein kinases (ERK) in cardiomyocytes through calcineurin. The results mediated by -adrenergic receptors ( -AR) were convincing in neonatal cardiomyocytes but might not be applicable to adult cardiomyocytes, which underg...

متن کامل

Heart Ryanodine Receptor Type 2 Is Required for the Development of Pressure Overload-Induced Cardiac Hypertrophy

Ryanodine receptor type 2 (RyR-2) mediates Ca release from sarcoplasmic reticulum and contributes to myocardial contractile function. However, the role of RyR-2 in the development of cardiac hypertrophy is not completely understood. Here, mice with or without reduction of RyR-2 gene (RyR-2 / and wild-type, respectively) were analyzed. At baseline, there was no difference in morphology of cardio...

متن کامل

Ryanodine receptor type 2 is required for the development of pressure overload-induced cardiac hypertrophy.

Ryanodine receptor type 2 (RyR-2) mediates Ca(2+) release from sarcoplasmic reticulum and contributes to myocardial contractile function. However, the role of RyR-2 in the development of cardiac hypertrophy is not completely understood. Here, mice with or without reduction of RyR-2 gene (RyR-2(+/-) and wild-type, respectively) were analyzed. At baseline, there was no difference in morphology of...

متن کامل

Different Expression of Extracellular Signal-Regulated Kinases (ERK) 1/2 and Phospho-Erk Proteins in MBA-MB-231 and MCF-7 Cells after Chemotherapy with Doxorubicin or Docetaxel

Objective(s) Curative treatment of breast cancer patients using chemotherapy often fails as a result of intrinsic or acquired resistance of the tumor to the drug. ERK is one of the main components of the Ras/Raf/MEK/ERK cascade, which mediates signal from cell surface receptors to transcription factors to regulate different gene expression. In this study, cytotoxicity and the expression of Erk...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation

دوره 104 1  شماره 

صفحات  -

تاریخ انتشار 2001